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ABSTRACT 
It is shown that if the ring of constants of a restricted differential Lie 
algebra with a quasi-Frobenius inner part satisfies a polynomial identity 
(PI) then the original prime ring has a generalized polynomial identity 
(GPI). If additionally the ring of constants is semiprime then the original 
ring is PI. The case of a non-quasi-Frobenius inner part is also considered. 

1. I n t r o d u c t i o n  

Rings of constants  of restricted differential Lie algebras with an outer act ion on 

prime and semiprime rings were investigated in detail in papers [Kh82], [Po83], 

[Pi86] (see also [Kh91, Ch.4, Ch6(6.4)]). In the present paper  we are going to 

consider actions with a nontrivial inner part.  In the papers [Ko91] and [Kh81] i t  

is shown tha t  the minimal restriction required is tha t  the inner par t  should be 

quasi-Frobenius (selfinjective). We are interested in the s tructure of a prime ring 

R provided it is known tha t  its ring of constants  satisfies a polynomial  identity. 

I. V. L 'vov ' s  example [Lv93] shows tha t  in this case the ring R does not need to 

* The first author wishes to thank CONACYT-M~xico for its support, Catedra 
Patrimonial number 940411.x; and also the Russian Foundation for Fundamental 
Research, grant 95-01-01356. 

** The third author wishes to thank CONACYT-M~xico for its support under grant 
4336E9406. 
Received May 7, 1995 and in revised form October 18, 1995 

357 



358 V . K .  KHARCHENKO, J. KELLER AND S. RODRIGUES-ROMO Isr. J. Math. 

be a PI-ring. We will show that in this case R satisfies a generalized polynomial 

identity. 

The notion of a generalized polynomial identity was introduced by 

S. A. Amitsur in [Am65]. In his paper S. A. Amitsur proved a structure the- 

orem for primitive rings with generalized polynomial identities. Later W. S. 

Martindale [Ma69] generalized this result to arbitrary prime rings. Using this 

theorem we will prove that if the ring of constants is a semiprime PI-ring and 

the inner part is quasi-Frobenius, then the ring R is a PI-ring. 

2. Pre l iminar ies  

Recall that  a d e r i v a t i o n  of a ring R is an additive mapping d: R -~ R satisfying 

the c o n d i t i o n  (xy)  d = x d y  + x y  d. If dl, d2 are derivations then it is easy to see 

that  the commutator  [dl, d2] = d id2  - d2d l  is also a derivation. Therefore the set 

Der R of all derivations of R'is a Lie subring in the ring of endomorphisms of the 

abelian group (R, +). Moreover, if z is a central element, then the composition 

of d with the multiplication by z is a derivation 

(xv) dz = z(xu) = ( z x %  + x(zy ). 

In this case the operators of multiplication may not commute with derivations: 
x z d ~ f ( z z ) d  = z d x  + ZX d or 

(1) z d = d z + z  d. 

Thus the set Der R is a right module over the center Z. The module structure 

of Der R is connected with the commutator operation by the formula 

(2) [dz, dl] = [d, dl]Z + d z  d~ . 

Note that  z dl is again a central element: [z dl , x] = [z dl , x] + [z, x dl ] = [z, x] dl =0. 

Finally, if the characteristic p of the ring R is nonzero, p R  = 0, then the pth 

power of any derivation will be a derivation by the Leibniz formula 

k=p 
( xy )Sp  x ' - " ~ k  d k dP -k  ---- 2 ~  t~p X y = X dpy + x y  dp. 

k----0 

Now it is natural to formulate the following definition. 
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2.1. Det in i t ion:  A set of derivations is called a d i f ferent ia l  r e s t r i c t e d  Lie 

Z-a lgebra ,  or in short a Lie 0-algebra,  if it is a right Z-submodule of Der R 

closed with respect to the operations [dl, d2] = did2 - d2dl  and d[p] = d p. 

Note that  the notion of a Lie 0-algebra can be formalized abstractly as a 

restricted Lie ring with a structure of right Z-module connected with the main 

operations by formula (2) and the following formula: 

p--1 
,% 

(3) (dz) [p] = d[P]z p + d . ( . . .  ( (zd z)d z) d . . .)d z 

which follows from (1) (see details in [Kh91, pp. 6-11]; for a slightly more general 

approach see in [Pa87]). 

Now let R be a prime ring. Denote by R7 its left Martindale ring of quotients 

(see, for example, [Kh91 pp. 19-24]), by Q the symmetric Martindale ring of 

quotients. Recall that  the center C of R~= is called the e x t e n d e d  (or gener -  

alized) centroid of R and it is a field (see [Ma69]). All derivations of R can 

be uniquely extended to derivations of Q and of R j:. The extended derivations 

are characterized in Der Q by the property R d C_ R but the linear combinations 

over C of extended derivations do not satisfy this property. Therefore we have 

to consider more general objects. 

2.2. De[ini t ion:  A derivation d of Q is called R-con t inuous  if there exists a 

nonzero two-sided ideal I of R such that  I d C R.  

It is easy to see that  the set 7)(R) of all R-continuous derivations is a differential 

restricted Lie C-subalgebra of Der Q. 

In the present paper we consider Lie 0-algebras of R-continuous derivations 

which are finite dimensional over C. 

Let us fix the notations R, C, Q, Ry  and / ) (R)  for a prime ring, its extended 

centroid, the symmetric Martindale ring of quotients, the left Martindale ring 

of quotients and the Lie 0-algebra of R-continuous derivations, respectively. 

Throughout the paper L denotes a restricted differential Lie C-algebra of R- 

continuous derivations, L C_/)(R), finite dimensional over C, and 

R L = { r E R : V # E L  r " = 0 }  

is its ring of constants. 
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3. T h e  i nne r  p a r t  of  a Lie 0 -a lgebra  

If a is an element of Q then the map a-: x ~ xa - ax is an R-continuous 

derivation, i.e. Q -  c_/)(R). 

3.1. Definition: The space K(L)  generated over C by all q E Q such that q-  E L 

is called the inner  l inear part  o f  L. 

It is clear that  C -  = 0, therefore K(L)  contains C and in particular it contains 

the unit of Q. 

3.2. LEMMA: The space K(L )  is a restricted Lie subalgebra of the adjoint 

restricted Lie algebra Q(-).  

Recall that  Q(-) is a restricted Lie algebra defined on the C-space Q with the 

operations [ql, q2] = qlq2 - q2ql, q[P] = qP. 

For the proof of the lemma it is enough to show that K ( L )  is closed with 

respect to these operations. This fact immediately follows from the formulae 

[a, hi- = [a-,  b-], 

(aP) - = (a-)[Pl. 

LEMMA: K ( L ) -  is equal to the subalgebra Lint O[ all inner derivations 

(4) 

(5) 

3.3. 

of L. 

The proof is evident. 

3.4. Deiinition: The associative subalgebra B(L) generated in Q by K ( L )  is 

called the inner  a s soc ia t ive  part  o f  L. 

3.5. LEMMA: The algebra B(L) is of finite dimension over C. 

Proof  By the definition of operations in K(L) ,  the identity map id is a 

homomorphism of restricted Lie algebras id: K(L)  --* B(L)( - ) .  Therefore B(L) 

as an associative envelope of B(L)(- )  is a homomorphic image of the universal 

restricted associative envelope Up(K(L)).  The latter has dimension (dim K(L) )  p. 

The lemma is proved. 

3.6. LEMMA: The algebra B( L ) is stable under the action of L, i.e. B( L ) u C_ B( L ) 

for all # E L. 

The proof follows from the formula 

(6) (q")-  = [q-, p]. 
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4. Di f fe ren t i a l  o p e r a t o r s  

Denote by O(L) the associative subring generated in the endomorphism ring of 

the abelian group (Q, +) by L and by the operators of left and right multiplica- 

tions by elements from B(L). By formula (1) the ring ff)(L) may not be an algebra 

over C. Of course O(L) is an algebra over the subfield of central constants 

F = c L ~ f { c  C C: Vl �9 L c t = 0}. 

Nevertheless ~(L)  is a left and a right space over C while the subring of left 

multiplications, B(L) l, and that of right multiplications, B(L) ~, are algebras 

over C. 

4.1. Let us fix derivations # 1 , . . . , # m  E L such that Pl -~- K ( L ) - , . . . , # , ~  + 

K ( L ) -  form a basis for the right C-space L / K ( L ) - .  An operator A is called 

c o r r e c t  if it is of the form 

A : S l  82 8 m  
Pl  ~2 " ' ' P m  , 

where 0 _< si < p and we suppose that #0 = 1 is the identity operator. 

Let U be a right linear space generated by all correct operators. By formula 

(1) this set will be a left space over C, also. 

4.2. PROPOSITION: The ring O(L) of differential operators is isomorphic as a 

left and a right space over C to a tensor product over C: 

(7) O(L) ~ s  r | s  t | U ~- U | B(L) l | B(L) r, 

where U is the linear space generated by correct operators over C. 

Proo~ It is enough to show that each differential operator d E ~(L) has a 

unique representation in the form 

~- OQj a ikajk /Xk  
i,j,k 

and a unique representation in the form 

(9) d = E Akaliaa;ka~ ), 
i,j,k 
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where a~k,ajk E A and A is some fixed basis of B(L)  over C (recall that  by 
r l 1 7" associativity, aikajk = ajka~k ) and the Ak's are correct words in {#1, . - . ,  #m}.  

The existence of this presentation follows from the relations 

(10) #a r = a r .  - (a") r, 

(11) pa I = at# - (a") t, 

(12) #P = # lc l  + " "  + #mCm + b r - b l, 

(13) ttittj = # j# i  + #1cl + "'" + #mCm + b r - b z, 

where in formula (12) #1cl + "'" + pmCm + b- is a representation of #P E L as 

a linear combination of #i's modulo K ( L ) -  and in (13) #1cl + " "  + #mCm + b-  

is the corresponding representation of [#~, t t j ]  E L. 

The transformations of the left hand sides to the right hand sides (in the last 

formula only if i > j )  allow us to reduce the operator to the form (8). 

If we write formulae (10), (11) in the form 

(14) a t .  = pa  r + (a ' )  r, 

(15) alp = #a z + (a;L) l, 

then in the same way the operator is reduced to the form (9). 

For the proof of the uniqueness it is possible to use the following results on 

differential identities (see [Kh91, theorem 2.2.2, corollary 2.5.8] or [Kh78]). 

4.3. PROPOSITION: It" the derivations # 1 , . . . ,  #,~ E 7)( R) are linearly indepen- 

dent  modu lo  Q - ,  and i f  the ring R satisfies an ident i ty  o f  the type  
pn 

E E akixA~ bki = O, 
k = l  i 

where A 1 , . . . ,  Apn are all correct operators and the coetticients aki, bki belong to 

R~-, then ~ aki | bk~ = 0 in Rj:  |  R 7  for all k, 1 <__ k <_ pn. In the same way, 

i f  the iden t i ty  

E akiXbki = 0 
k----1 

is valid then ~ i  aki | bki = O, 1 ~_ k ~ pn. 

Since 7)(I) = 7)(R) and Q(I )  = Q(R)  for each nonzero ideal I of R (see [Kh91, 

Lemma 1.8.4]), then Proposition 4.3 shows that the restriction of a nonzero dif- 

ferential operator d E (I)(L) to I is nonzero. This note is important due to the 

following lemma: 
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4.4. LEMMA: For each differential operator d E q~(L) there exists a nonzero 

two-sided ideal I of R such that I d C_ R. 

The proof is easily obtained by induction from the formula (i2)g _ i g i + i i  ~, C 

I, which is valid for the ideal I such that I ~ C_ R. 

5. Q u a s i - F r o b e n i u s  a lgebras  

Recall that  a finite dimensional algebra B over a field C is called quasi-Frobenius 

if one of the following equivalent conditions is valid (see [CR62]): 

(Q1): For each left ideal A and right ideal p of B the following equalities hold: 

l(r(A)) = A, r(l(p)) = p, 

where l(A) = {b E B: bA = 0} is the left annihilator, r(A) = {b E B: Ab = 0} is 

the right annihilator. 

(Q2): The left regular module BB  is injective. 

(Q3): Modules BB  and (Bs)* = Hom(B, C) have the same indecomposable 

components. 

Recall that  for any left (right) module M the set of all linear functionals M* 

has a structure of right (left) module defined by the formula (m'b)(m) = m* (bm) 

(respectively m(bm*) = (mb)m*). The modules M and N for N - M* are called 

c o n j u g a t e d  modu le s .  If the module M is of finite dimension then (M*)* _~ M 

and the conjugacy of modules (left and right), M and N, can be characterized by 

the existence of a nondegenerate associative bilinear form ( , ): N • M --* C. In 

this case for every basis a l , . . . ,  an of M there exists a dual basis a~ , . . . ,  a* of N 

which is characterized by the following properties (a*, a~) = 1, (a*, aj) -- 0, i ~ j. 

Condition (Q3) implies the following condition which is important for us: 

(Q4): The sum of all right ideals p o r b  co~:jugated to /e f t  ideals of B is equal 

to B.  

It can be proved that  this condition is also equivalent to B being quasi- 

Frobenius. Moreover, as (Q1) is left-right symmetric then the left analog of 

(Q4) is also valid. 
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(Q5): The sum of  all left ideals A o r b  conjugated to right ideals of  B is equal 

to B.  

The most important  subclass of the class of quasi-Frobenius algebras is the 

class of Frobenius algebras. These algebras are defined by one of the following 

equivalent conditions ([CR62]): 

(F1): For each left ideal A and right ideal p o r b  the following equalities hold: 

l(r(A)) = A, dimr(A) + dimA = d imB,  

r(l(p)) = p, diml(p) + d i m p =  d imB.  

(F2):  There exists an element e E B* whose kernel contains no nonzero one-sided 

ideals of  B.  

(F3):  There exists a nondegenerate associative bilinear form B x B ~ C. 

(Fa): The modules BB and (BB)* are isomorphic. 

Classical examples of Frobenius algebras are: group algebras of finite groups 

over a field of arbi trary characteristic, universal restricted enveloping algebras 

of finite dimensional Lie p-algebras, finite dimensional Hopf algebras, Clifford 

algebras. Finite dimensional semisimple algebras evidently satisfy (F1), therefore 

they are Frobenius. 

6. U n i v e r s a l  c o n s t a n t s  

Let A and p be left and right conjugated ideals of/3(L).  Let us choose a basis 

* . * be the dual basis of p. It  is well-known that  a l , . . . , a n  of A and let a l , . .  ,a  n 

the element c -- ~ a~ | a* of the tensor product I3 |  B commutes with the 

elements of B, bc = cb for all b E /3. This implies that  the set of values of the 
l * r operator c~,p = ~ a~(a~ ) is contained in the centralizer of/3. In particular, for 

any # E K ( L ) -  we have 

(16) c~,p(x) t' = O. 

Let U(L) be the associative subring of O(L) generated by L and by the opera- 

tors of multiplication by central elements. It  is clear that  U(L) is both  a left and 

a right space over C and an algebra over the field of central constants F = C L. 

Consider the right ideal I = K ( L ) -  �9 U(L) of U(L). First of all the formula 

p a -  = a - #  - ( a ' )  - shows that  I is a two-sided ideal of U(L). The same formula 
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and formulae (12), (13) show that the identity operator and operators of the form 

a 1 a 2 . . .a~-A, where A is a correct operator, a~ E K(L),  s > O, generate U(L) 

as a left space over C. 

6.1. PROPOSITION: The factor-algebra U(L) / I  = U is Frobenius as an algebra 

over F = C L. 

Proo~ By the well-known R. Baer theorem [Ba27] the dimension of C over F is 

finite and therefore U = U(L) / I  has a finite dimension over F.  Since K ( L ) -  C_ I, 

the elements #1 = # 1 + I , . . . ,  #m = #m+I  generate U as a ring over C. Moreover 

the relations pi~tj : [pi, pj] + f t j f t  i show that the images of correct words /~k 

generate U as a left vector space over C. The main note is that the elements/~k 

are linearly independent over C. If 

E ckAk = E d k A k  E I, 
k k 

where dk are linear combinations of products of the type a~- . .-  a~-, then taking 

into account that a -  = a ~ - a I and using Proposition 4.3, we have c~ = dk for 

all k, which is impossible since c~(1) = ck, dk(1) = 0. Thus ~k are linearly 

independent. 

Now let us define Berkson's linear map (see [Be64]) ~a: U --~ C which cor- 

responds to the element ~ ck/~k, the coefficient of/~pm = # p - 1 . . .  #p-1. The 

kernel of this linear map contains neither left nor right nonzero ideals, since the 

product 
(p l - p - 8 1 - 1  . . .  

written as a linear combination of correct words contains a unique member /~p~ 

with a coefficient equal to 1. 

If r C --~ F is any projection, then the linear functional r d ~-* r 

satisfies (F2) and therefore U is a Frobenius algebra. The proposition is proved. 

Let us consider the right subspace U of U over C generated by all nonempty 

words 5,k. This space does not contain the unit (the identity operator) and it is 

a right (but, possibly, not a left) ideal because by formula (14) one has 

2~c# = ~ # c  + s  ~. 

By formula (13), the product /~#  can be written as a linear combination ~/~kCk, 

where/~k are nonidentity correct operators. 
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Thus, the left annihilator A = l(~)) in the algebra W is not equal to zero. 

Moreover, by (F1) its dimension over F is connected with the dimension of D 

by the formula dimF U = d imF/ )  + dimF A. On the other hand dimF U = 

dimF U + dimF C, i.e. the dimensions of A and C over F coincide. It means that  

A is one dimensional over C, i.e. A = C f  (but possibly A r f C  as A may not 

be a right C-space), where f = ~ /~kck  = ~ c~/~k is a nonzero element of U. 

Thus, we have obtained that  f # i  = 6 in U. In the ring of differential operators 

this means that  f#~ �9 K ( L ) - .  U(L). We have also that f K ( L ) -  c_ K ( L ) - .  U(L) 

as I = K ( L ) -  �9 U(L) is a two-sided ideal. Thus 

f L  C_ f ( E ( t t i C  + K ( L ) - ) )  C_ K ( L ) -  . U(L) 

which, using formula (16), implies 

(17) ( (c~,,(x) ) l)  ~ = 0 

for all p E L. Let us formulate the obtained result as a lemma (see also Lemma 

4.6, [Kh96]). 

6.2. LEMMA: There exists a differential operator f of the type ~ Akck = 

c~Ak, such that for each conjugated left ideal A and right ideal p of B with 

dual bases al, �9 �9 ., an and al . . . , an,* the operator 

t * r (18) ua,. ~-~a~(a~) f 

has values only in the ring of constants QL. There exists a nonzero ideal I o f  R 

such that 

(19) 0 7 s u,x,p(I) C_ R L. 

Proof'. The representation of f in the form E c~Ak follows from (10). Formula 

(19) follows from formula (17), Proposition 4.3 and Lemma 4.4. 

7. PI rings of  constants 

In this secton we will prove the theorem about a generalized polynomial 

identity and discuss its generalization to the case when the inner part  is not 

quasi-Frobenius. 
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7.1. THEOREM: Let L be a finite dimensional restricted differential Lie C- 

algebra of R-continuous derivations of a prime ring R of positive characteristic 

p > O. Suppose that the inner associative par t  B(L) of L is quasi-Frobenius. I f  

the ring of constants R n is PI then R is GPI. 

Proof Let f ( x l , . . . , x n )  -- 0 be a multilinear identity of R L. Let us choose 

arbi trary left ideals A1, . . . ,  An of B(L) having conjugated right ones P l , . . - ,  pn. 

By Lemma 6.2 for every j ,  1 _< j < n there exists an operator 

1 * r 
Uj ?2Aj,p3 ~--~aij(aij) f j ~--~ l .  r ,  = = = aij(aij ) CkAk 

i i,k 

and a nonzero ideal I j  of R, such that  0 r uj(Ij) C R L. I f I  = NI j  then 

uj (x) E R L for all x C I and therefore the following differential identity holds 

in I :  

f(ul(Xl), u2(x2),.. . ,  Un(Xn))=0. 

Let us fix some values of x2 = b2 , . . . ,  xn = bn in I.  We have 

(20) f (E(c~ai lx la*l)  ~k, u2(b2),...,un(bn)) =0.  
\ i,k 

By Leibnitz formula any expression of the type (axb) z~ can be writ ten in the form 

(axb) A = axAb + ~-~ asxA'bs, 
8 

where A~ are subwords of A. In particular 

(21) , * A~ . , _  A ~ ,  ~--~a~x~l.bs. (ckailxlail) = ~kttil~l ail -4- 
8 

If Ako is the greatest operator such that  c' is not zero, then this formula allows ko 
us to represent (20) in the form 

ko 

Vki 1 ~i = 0; 
k = l  i 

here we suppose that  A1 < A2 < . . .  < Apm is the lexicographic ordering of all 

correct operators. By Proposition 4.3 applied to the prime ring I we have 

E vkoi | Wkoi = 0 
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in the tensor product I:r | I~,  where C(I)  is the generalized centroid of I 

and I s  is the left Martindale ring of quotients of I.  It  is well-known and it is 

easy to see that  I~= = R~: and C(I )  = C(R) .  Therefore for any Xl E Rj: we have 

the identity 

~---'~VkoiXlWko i ~- O. 
i 

This identity with (21) and (20) implies that  the identity 

ai lx la i l ,  u2(b2) , . . . ,  un(bT~ 0 

is valid for each xl  E R~=. 

Since the values b2 , . . . ,  b~ are arbi trary from I,  we have an identity of the form 

(23) f ( ~ i a i l x l a * l , U 2 ( x 2 ) , . . . , U n ( X n ) )  : 0 ,  

where xl  E R~,x2  E I , . . . , x n  E I .  

Now let us fix values xl E RT, x3 = b3 E I , . . . ,  xn = bn E I .  Then in the same 

way we obtain 

(z  a" f a i l x la i l ,  ai2x2 i2, �9 , ~n(Xn = O~ 
\ i i 

where x l , x 2  E R ~ , x 3 , . . . X n  E I.  

Continuing this process we will obtain the following identity on R j:: 

(24) f a i l x la i l ,  1 2 x 2 a i 2  , , 

\ i i i 

This is a generalized identity valid in R~- 2 R. All we need is to prove that  

for some A1, . . . ,  An; P l , . . . ,  Pn this is not a trivial identity. I t  means that  the 

left hand side of (24) is not zero in the free product Rj: *c C ( x l , . . . ,  x=} or, in 

other words, this identity does not follow from the trivial generalized identities 

xc = cx, where c E C. Otherwise assume all these identities are trivial. 

Any application of a trivial identity does not change the order of the indeter- 

minates, therefore all the generalized monomials (i.e. sums of all monomials with 



Vol. 96, 1996 PRIME RINGS 369 

fixed order of sequence of the indeterminates) in the identities (24) should be 

(trivial) identities. These generalized monomials have the form 

where ~r is a permutation and 

Since one of the coefficients ~ is equal to one (let ~1 -- 1), 

(25) (~i ailxla*l) (~i ai2x2a*2) ... (~i ainXnai*n) =0. 
Let us fix some values of x2, . . .  ,x~ in R and apply Proposition 4.3 to (25), 

where we suppose x = x~, and all coefficients ak~, k = 2 ,3 , . . .pm (in (25)) are 

zero. We have 

The set {aii} is a basis of the ideal A1, i.e. this is a linearly independent set, 

therefore 

for all a* 1 from the dual basis {a*l} of the conjugated ideal Pl. This implies that  

Since the pair (A1, Pl) was chosen in an arbitrary way, 

(26) (p'___.left ~ i d e . l o f I  p) (~a~Ix2a*2)"'(~ainXnai*) =0" 
By Property (Q5) of quasi-Frobenius algebras 

p*_~ a lef t  idea l  of  
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and therefore .)0 a i 2 x 2 a i 2  � 9  a i n X n a i n  -~  

Now the evident induction works. The theorem is proved. 

The same proof can be applied also for some cases when the inner part  is not 

quasi-Frobenius but  has enough pairs of conjugated one-sided ideals. Indeed, 

let us denote b y / ~  the sum of all right ideals of a finite dimensional algebra B 

conjugated to left ones. 

7.2. LEMMA: ~7- is a two-sided ideal of B. 

Proof  Let p be a right ideal such that  the dual left, module p* = Horn(p, C) 

is isomorphic to a left ideal A. If  b E B then we have an exact sequence of 

homomorphisms of right ideals p -~ bp -* O. The conjugated sequence has the 

form p* ~-- (bp)* ~-- O, therefore the right ideal bp has a conjugated module (bp)* 

which is isomorphic to a left subideal of A ~ p*. Thus bp C B~ and /~  is a 

two-sided ideal. The lenmla is proved. 

In the same way one can define an ideal Bl - -  the sum of all left. ideals 

conjugated to right ones. 

7.3. THEOREM: Let L be a finite dimensional restricted differential Lie C- 

algebra of  R-continuous derivations of a prime ring R of positive characteristic 

p > 0. I f  the algebra of  constants R L satisfies a multilinear polynomial identity 

of degree n and B(L)~ r O, then R is a GPI-ring. 

Proof  In the same way as in the proof of Theorem 7.1 we have identities (24). 

If all of these identities are trivial, then we also have the identities (26) Which 

can be wri t ten in the form 

(E .)_-0 (27) 13(L)~ ai2x2a "'" alnX,~.am 

If  b is an arbi trary element of B(L), then b (~ i  ai~.xka*~) = ( ~  alkxka*k)b. 

Therefore for b E/~(L)~, identity (27) implies 

(E ") (28) a~2x2 i2 a~nx~a~ b = O. 

By Proposit ion 4.3 we have 
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as in the proof  of Theorem 7.1 we have 

B(L)r  (~-~ai3x3a*3) . . .  (~-~ai~xna~*~) b 

thus 

= 0 ,  

(E :3) (E a i 3 x 3  a � 9  a i n X n a i n  

Now the evident induct ion implies 13(L)~ = 0. Hence one of the G P I ' s  (24) is not  

trivial. The  theorem is proved. 

In  a symmetr ica l  way one can prove tha t  the condition B(L)~ # 0 also implies 

tha t  one of the identities (24) is not  trivial. I t  can be proved tha t  B~ = 0 iff 

B~ = 0: 

7.4. PROPOSITION: Let 13 be a finite dimensional algebra. Then all n + 1 
k n - k  conditions B~ B l = 0, k = 0 , . . . ,  n are equivalent to each other. 

Proof: I t  is enough to show tha t  the conditions for k and k + 1 are equivalent. 

The condit ion r~kr~n-k k ~ -k -1  ~r ~ = 0 is equivalent to B~ B l A = 0 for all pairs of 

conjugated ideals p, $. Since the form ( , ): p • )~ --+ C is nondegenerate,  the 

last condit ion for given A, p is equivalent to k n - k - 1  (p, B~ B l ~) = 0. By associativity 

' B k* '=-k-1 ~) = 0, and since the form is of the form this is equivalent to ~p ~ v l 

nondegenerate  this is equivalent to pBkl3 =-k-1 = 0. The last conditions for all v l 
k - 4 - 1 r ~ n - k - 1  pairs of conjugated ideals ~, p are equivalent to B~ ~l = 0. The proposi t ion 

is proved. 

Now it is a question of interest whether the condition B(L)~ = 0 implies tha t  

all identities (24) are trivial generalized polynomial  identities. The answer is yes: 

7.5. PROPOSITION: I f  under the conditions of Theorem 7.3, B(L)~ = O, then all 

identities (24) are trivial 

Proof: I t  is enough to show tha t  all the generalized monomials  (25) are trivial 

identities. We will prove by inverse induction on k tha t  for a rb i t rary  b l , . . .  ,'bk E 

B(L)r  the generalized polynomial  

is a trivial generalized identity. 

If  k = n, then (29) has the form b,~bn_l . . .  bl = 0 tha t  is a trivial identi ty as 

B(L)~ = 0. 
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Assume that  (29) is a trivial identity. The identities 

(30) b aisXais aisXais 

are trivial generalized polynomial identities (as well as any linear generalized 

identity). Let bk ---- a* k, then from (29) and (30) we have the following trivial 

identity: 

aik ai k+lXk+la i k + l  " ' "  ainXnain 

Multiplication of this equality on the left by alkxk and summation over i gives 

the equality (29) with a smaller k. The proposition is proved. 

8. S e m i p r i m e  P I - r ings  of  c o n s t a n t s  

In this secton we will prove, under the conditions of Theorem 7.1, that if the ring 

of constants R L is a semiprime PI-ring, then R is also PI. 

8.1. THEOREM: Let L be a finite dimensional restricted differential Lie C- 

algebra of  R-continuous derivations of a prime ring R of positive characteristic 

p > O. Suppose that the inner associative part B(L) of L is quasi-Frobenius. I f  

the ring of  constants R L is a semiprime PI-ring, then R is PI. 

Proof: By Theorem 7.1 the ring R satisfies a generalized polynomial identity. 

Moreover all generalized polynomial identities (24) hold in its left Martindale 

ring of quotients R~. In particular they hold in the central closure R C  C_ R~: of 

the ring R. By the Martindale structure theorem [Ma69] this central closure has 

an idempotent e, such that D = eRCe is a skew field of finite dimension over C. 

(Note that  formally the Martindale theorem can be applied only if the coefficients 

of the identity belong to R. In our case they belong to R j: but may not belong 

to R. Nevetheless Martindale's original proof is correct for our case too; see, for 

instance, [Kh91, Theorem 1.13.4] or the special investigation in [La86].) 

Thus, by the Martindale theorem, RC is a primitive ring with a nonzero socle. 

The N. Jacobson structure theorem [Ja64] shows that R C  is a dense subring in 

the finite topology in the complete ring s of linear transformations of the left 

space V -- e R C  over the skew field D. 
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Moreover, the left Martindale quotient ring (RC)j: is equal to $ (see [Ha82, 

Lemma 1.1] and [Ha87, Remark 4.9] or [Kh91, Theorem 1.15.1]). It  is easy to 

see that  Rj= C_ (RC)7 = E. (Indeed, if q C R j= and Iq C_ R for a nonzero ideal 

I of R, then we can extend q to the ideal IC of RC by the obvious formula 

(~-~ i,~c,~)q = ~-~(i~q)c~. This is well-defined. Indeed, if ~ i,~c,~ = 0 and J is 

a nonzero ideal of R such that  Jc~ C R, then ~-~.(jc~)i,~ = 0 for all j E J .  

Therefore ~(jc,~)(i~q) = 0; i.e. J(~c,~(i,~q)) = 0 and ~(i,~q)c~ = 0.) Now all 

the coefficients of (24) belong to ~, and since addition and multiplication are 

continuous in the finite topology, the identities (24) hold in $. (Here one can use 

also Corollary 2.3.2 from [Kh91] which allows us to extend identities from RC to 

Now we are going to prove that  the space V is finite dimensional over D. In 

that  case the dimension of E over C will also be finite: d = d imc $ = (dimD V) 2. 

d ime D and $ (and therefore R), like any d-dimensional algebra, will satisfy the 

standard polynomial identity: 

S d ( X l , . .  ., Xd.-bl ) ~ E ( - - 1 ) ~  Xz~(1) ' ' 'X~-(d+I) = O. 

On the contrary, suppose that  V has infinite dimension dim V -- /3. Let M 

be the set of all linear transformations whose rank is less then/3.  (Recall that  

the r a n k  of a transformation l is the dimension over D of its image.) It  is 

well-known that  M is a maximal ideal of C. So the factor ring ~ = E/M is a 

simple ring with a unit. 

8.2. LEMMA: The ring $ is not Artinian. 

Proof." Let {ei, i c I} be a basis of V over D, and 

I i ~ I 2 ~ . . . ~ I , ~ . . .  

be a chain of subsets such that  [Ik \ f k + l [  : ]~, and let 

A n = { l e C : e j = O  V i E I \ I n } .  

Then 

(A1 + M ) / M  ~ A2 + M / M  ~ ... ~ An + M / M  ~ ... 

is an infinite descending chain of right ideals of $. 
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Indeed, if An q- M = An+l q- M,  then for the transformation w, defined by 

ei i f i  E I~ \ I~+1, 
eiw = 0 otherwise, 

we should get a presentation w = a + m, where a C A~+I, m C M. Let V1 be a 

subspace generated by {ei: i E I~ \ I~+1}. Then V1 = Vlw C_ V ia+  Vim = Vim. 

However, dimD V1 -- 3, while dimD Vim <_ dim V m  < fl, which is a contradiction. 

The lemma is proved. 

8.3. LEMMA: The ring g does not satisfy a nontrivial generalized polynomial 

identity. 

Proof'. Like any simple ring with a unit, the ring g is primitive. If it satisfies 

a GPI, then by the S.A. Amitsur structure theorem [Am65] it has a nonzero 

socle S, which is a two-sided ideal and therefore S = g. In the N. Jacobson 

presentation of g as a dense ring of linear transformations, the socle consists 

of all transformations of finite rank. This means that the unit has finite rank 

and therefore the space has finite dimension. Thus g is the ring of all linear 

transformations of a finite dimensional space over a skew field. In particular g is 

Artinian; this is a contradiction to Lemma 8.2. The lemma is proved. 

Let us consider now identities (24). We have seen that  all these identities hold 

in s If we apply the natural homomorphism ~: s -+ E = g / M  we obtain the 

following identities of the ring g: 

(31) f - -* , a~xna,~ a i l x l a i l , .  . .  �9 . ~ O ,  

where fi-- ~(a) = a +  M. 

By Lemma 8.3 all we need is to prove that one of the identities (31) is a 

nontrivial GPI of g. 

First of all we have to calculate the generalized centroid of g. As g is a simple 

ring with a unit, it equals its left Martindale quotient ring and therefore the 

generalized centroid is equal to the center. 

8.4. LEMMA: The center of g is canonically isomorphic to C, C(g)  = ~(C).  

Proof: See [Ro58, Corollary 3.3]. 

We will need the following result which gives a criterion for determining when 

the ring of constants is semiprime (see Theorem 5.1 [Kh96]). 
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8.5. THEOREM: Under the conditions of Theorem 8.1, the ring of constants is 

semiprime if and only i f  B( L ) is differentially semisimple, i.e. it has no nonzero 

differential (with respect to action of L) ideals with zero multiplication or, equiv- 

alently, it is a sum of a finite number of differentially simple algebras. 

By this theorem we have that in our situation the algebra B(L) is differentially 

semisimple. 

8.6. LEMMA: The ideal M is a differential ideal with respect to L, i.e. M ~ C_ M 

for each # E L. 

Proof: Note that  M is a differential ideal with respect to each derivation of 

C. Indeed, if l c M then l is a transformation of rank less than t3 and the 

projection e: V ~ iml also has rank less than/3, in which case l = le. We have 

l" = l~e + le ~ E M for each derivation p E Der(s 

By proposition 1.8.1 [Kh91] any R-continuous derivation has a unique extension 

to R~. In particular each derivation from L is defined on RC. Again by the same 

proposition we have that  the elements of L have unique extensions to (RC)~ --- C. 

Thus we have obtained that  the ideal M is differential with respect to L. The 

lemma is proved. 

As a consequence we have that  the intersection Mo = M N B ( L )  is a differential 

ideal of /~(L) ,  which is not equal to B(L) (it does not contain 1). The left 

annihilator l(Mo) of M0 in/~(L) is also a differential ideal, therefore l(Mo) N Mo 

is a differential ideal with zero mulitiplication. By Theorem 8.5, l(Mo) n Mo = O. 

In the same way the left annihilator of the sum l(Mo)+ Mo is zero (it is contained 

in l(Mo) and, therefore, has a zero multiplication). Now property (Q1) of quasi- 

Frobenius algebras implies that  l(Mo) + Mo = r(l(l(Mo) + Mo)) = r(O) = I3(L) 

and, finally 

(32) B(L) = l(Mo) @ Mo = eB(L) �9 (1 - e)B(L), 

where e is a central idempotent defined by the corresponding decomposition of 

the unit l = e @ ( 1 - e ) .  

Let us return to identities (31). Suppose that in these identities {ad} and 

{ai*j} are bases of conjugated ideals ~j, pj contained in l(Mo). In that  case the 

sets Aj -- {alj , i  -- 1 , . . . m }  are linearly independent over the center of $ (see 

Lemma 8.4). Moreover, the C-space generated by all possible a~*j's contains the 

unit e of l(Mo) because for each conjugated pair of ideals A, p the one-sided ideals 
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eA, ep are also conjugated with respect to the same form (note that e is a central 

idempotent of B(L)). This implies that the linear space over the center .of 

generated by all ~i*j's contains the unit ~ of s This fact allows us to prove that 

one of the identities (31) is nontrivial in the same manner as was done at the end 

of the proof of Theorem 7.1. By Lemma 8.3, Theorem 8.1 is proved. 

In this proof we used the fact that the inner part B(L) is differentially 

semisimple and that it has enough pairs of conjugated ideals. Therefore in the 

way analogous to Theorem 7.3 we can formulate a slightly more general result. 

8.'/. THEOREM: Let L be a finite dimensional restricted differential Lie C- 

algebra of R-continuous derivations of a prime ring R of positive characteristic 

p > O. Suppose that the inner part B(L) is a direct sum of differentially simple 

ideals 

g(L) = B1 @ B2 G . . .  G Bin. 

If the algebra of constants R L satisfies a multilinear polynomial identity of degree 

n and (Bi)~ # 0, i = 1 , . . . ,  m, then R is a PI-ring. 

The only place where we have used that B(L) is quasi-Frobenius is decom- 

position (32). Therefore it is enough to show that each differential ideal of the 

direct sum of differentially simple algebras with units is a direct summand. If 

B = B1 @ B2 @"  �9 @Bm is a direct sum of differentially simple algebras, then for 

any differential ideal A we have that ABi is a differential ideal of Bi. This implies 

that either Bi C_ A or ABi = 0. In the same way either Bi C_ A or BiA = 0. Let 

l(A) be the left annihilator of A; then l(A) n A is a differential ideal with zero 

multiplication, so its product with each Bi is zero. This is possible only if the 

intersection is zero. In the same way the left annihilator of the sum l(A) + A has 

a zero multiplication and therefore it is equal to zero. It means that l(A) + A 

contains all the components Bi and l(A) • A = B. 
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